If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16^3-20x^2+6x=0
We add all the numbers together, and all the variables
-20x^2+6x+4096=0
a = -20; b = 6; c = +4096;
Δ = b2-4ac
Δ = 62-4·(-20)·4096
Δ = 327716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{327716}=\sqrt{4*81929}=\sqrt{4}*\sqrt{81929}=2\sqrt{81929}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{81929}}{2*-20}=\frac{-6-2\sqrt{81929}}{-40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{81929}}{2*-20}=\frac{-6+2\sqrt{81929}}{-40} $
| 16+6.8n=11+7n | | -0.55+0.94x=0.0236 | | 2(x)=5x-6 | | 61x-244=305 | | 8x-24=176 | | x−21=43 | | 48x-480=48 | | 3(18p-201)-11p+45=0 | | -2=8*x+3 | | x³–5x²+2x+8=0 | | x3–5x2+2x+8=0 | | 36x+252=936 | | 7(y−3)=3y−41 | | -25=7x | | X^3+18x^2+17x=0 | | 2x-6-4x=3+5x+1x-7 | | m-8,m=12 | | 1x+3-5x=2x+5-3x | | 9|-4n-6|=54 | | 50+10x0+7=2= | | 50=10x0=7=2+ | | 10y+3(-2y-50=1 | | 2(x+7)=4x+6 | | 16(2.3)x=(6.4)x | | 7.5=1.5x(3/4)+x(3/4) | | 5000000000000000x3600= | | 3(y+4)-4=14 | | 2-w/4=5 | | -2x^2+3x^2=0 | | 5x+5+3x+2=6x-8 | | 5=2+0.75d | | -3(5s-6)-18=-2(9s+0)-2 |